
DevOps Round-trip Engineering:
Traceability from Dev to Ops and Back Again

Miguel Jiménez1, Lorena Castaneda1, Norha M. Villegas2,
Gabriel Tamura2, Hausi A. Müller1, and Joe Wigglesworth3

1 University of Victoria,
Victoria, British Columbia, Canada
{miguel,lcastane,hausi}@uvic.ca

2 Universidad Icesi,
Cali, Valle del Cauca, Colombia

{nvillega,gtamura}@icesi.edu.co
3 IBM Toronto Laboratory,

Toronto, Canada
wiggles@ca.ibm.com

Abstract. DevOps engineers follow an iterative and incremental process
to develop Deployment and Configuration (D&C) specifications. Such
a process likely involves manual bug discovery, inspection, and modi-
fications to the running environment. Failing to update the specifica-
tions appropriately leads to technical debt, including configuration drift,
snowflake configurations, and erosion across environments. Despite the
efforts that DevOps teams put into automating operations work, there
is a lack of tools to support the development and maintenance of D&C
specifications. In this paper, we propose Tornado, a two-way Continu-
ous Integration (CI) framework (i.e., Dev CI−→Ops and Dev CI←−Ops) that
automatically updates D&C specifications when the corresponding sys-
tem changes, enabling bi-directional traceability of the modifications.
Tornado extends the concept of CI, integrating operations work into
development by committing code corresponding to manual modifications.
We evaluated Tornado by implementing a proof of concept using Ter-
raform templates, OpenStack and CircleCI, demonstrating its feasibility
and soundness.

Keywords: DevOps, Round-Trip Engineering, Traceability, Software
Deployment, Continuous Integration

1 Introduction
Changes in the artefacts used throughout software development and operations
are inherently causally connected to one another. For example, modifying the
deployment specifications will affect the corresponding system and the infras-
tructure it runs on. Analogously, updating the physical infrastructure will cause
updates to the software and networking configuration. Traditionally, this rela-
tionship has been implicit and poorly supported by software development pro-
cesses and tools. DevOps practices have increased its visibility in the context



2 DevOps Round-trip Engineering

of a continuous development process [1,2], impacting mostly the forward direc-
tion (i.e., Dev→Ops). In contrast, there is a lack of standard and technology-
supported processes to bridge explicitly and repeatedly in the backward direction
(i.e., Dev←Ops) [3,4,5,6]. This inability hinders the process of keeping operation
and development information consistent with the deployed system.

Many organisations adopt a forward-only development strategy to avoid con-
figuration inconsistency. Any modification to the system or its infrastructure
must be performed in the forward direction, using, for example, infrastructure
as code (IaC). This approach ensures consistency between the running system
and its D&C specifications, and at the same time allows tracing the changes.
However, DevOps engineers and operators still follow a manual bug discovery
and exploratory experimentation process that leads to fixing faults. D&C speci-
fications are the result of an incremental process, in which each step is likely to
involve manual actions and inspection. Therefore, it is still a task of the engi-
neers to capture the drift between an experimental environment and the original
setting, before updating the specifications. Failing to do so leads to configuration
drift, snowflake configurations, erosion across environments, and other forms of
technical debt [7,8,9]. There is a need to support keeping the D&C specifications
in sync.

Automatically maintaining the consistency between D&C specifications and a
running system is known as automatic Round-Trip Engineering (RTE) [10,11,12].
Our contributions are as follows. We introduce Tornado, a framework for real-
izing RTE in DevOps. We demonstrate how the concept of continuous integra-
tion [13] can be extended from its traditional use to integrate operations work
into development. Tornado is a two-way conTinuOus integRatioN frAmework
for DevOps (i.e., Dev CI−→Ops and Dev CI←−Ops) that enables bidirectional trace-
ability [14] of changes and transformation between a running system and its
D&C specifications. Our evaluation consists of a proof of concept implemen-
tation based on Terraform templates4 and OpenStack.5 This implementation
allows us to demonstrate the feasibility and soundness of Tornado.

This paper is structured as follows. Section 2 presents our motivation. Sec-
tion 3 introduces fundamental concepts used in the description of our proposal
and discusses related work. Section 4 presents Tornado. Section 5 presents our
evaluation. Finally, Section 6 concludes the paper and outlines future work.

2 Motivation

In this section, we describe the motivation for Tornado, by highlighting relevant
concerns about consistency and quality of D&C specifications.

Experimentation on production-like environments enables DevOps engineers
and operators to develop new features and fix faults by performing ad-hoc mod-
ifications. There are D&C specifications, such as Terraform templates, that need
be updated accordingly. These updates range from low-level configurations, such

4 https://www.terraform.io (accessed Oct, 2018)
5 https://www.openstack.org (accessed Oct, 2018)

https://www.terraform.io
https://www.openstack.org


DevOps Round-trip Engineering 3

as opening ports in a firewall, upgrading or downgrading software packages, to
structural changes, such as duplicating services or modifying the scaling poli-
cies of virtual resources. Failing to propagate these changes to the specifications
appropriately leads to configuration inconsistencies.

The state of the practice for D&C testing is based on static analysis and
functional tests [15,16,7]. The former provides quick feedback on minor pro-
gramming mistakes, such as syntax errors. The latter consists of deploying the
infrastructure and execution of unit, integration and system tests to determine if
the deployed resources and their configuration are adequate. Deploying and re-
deploying the system and its infrastructure to sandbox environments is resource
and time consuming. Furthermore, modifying a specification can adversely im-
pact another. For example, modifying a hostname on a network configuration
file without appropriately replicating the update to other specifications (e.g.,
software deployment) will likely cause a connection timeout. This hinders the ex-
perimentation process and requires manual inspection and debugging. Bugs may
not appear prior to deployment because specifications are not usually connected,
unless they are input to a common compiler/interpreter. Run-time modelling6

seems to be a feasible alternative to capture the notations’ domain logic and val-
idate them prior to deployment, reducing the cases in which the infrastructure
must be deployed for testing purposes. It also reduces the developer’s cognitive
load, as feedback is provided in a timely fashion.

3 Fundamentals and Related Work

This section introduces fundamental concepts for describing our framework and
presents related research.

3.1 Round-Trip Engineering

Round-Trip Engineering (RTE)7 is the process of ensuring the consistency of
multiple, changing and interconnected software artefacts [10,11,12,18]. These
artefacts participate in a source-target relationship, in which a derivation process
creates the target from the source artefact. Target artefacts are usually further
altered due to maintenance work or changing requirements [12]. Therefore, these
artefacts may no longer be the result of the derivation process and, thus, creating
inconsistencies when source artefacts are modified and the derivation process is
applied again. RTE ensures consistency between these artefacts by reflecting
changes to the target artefact back to the source artefacts.

RTE is closely related to Forward and Reverse Engineering (FE and RE, re-
spectively). FE is the process of deriving one or more target artefacts from one or
more source artefacts. RE is the process of reconstructing these sources from the
target artefacts, recovering any information lost in the derivation process [19,10].

6 In the literature often referred to as models@run.time [17]
7 Model synchronisation and RTE are often used interchangeably in the literature [12]



4 DevOps Round-trip Engineering

3.2 Continuous Integration

Continuous Integration (CI) is an agile software engineering practice that allows
developers to frequently merge work to a shared mainline multiple times per
day [20,13]. It includes frequent automated building and testing of the software
in response to code modifications. A typical implementation of this practice in-
cludes a CI server that pulls code from a version control repository and executes
interconnected steps to compile the code, run unit tests, check quality and build
deployable artefacts. Even though automating the integration process is impor-
tant for adoption, the relevance of CI lies in the frequency of integration. It has
to be regular enough to provide quick feedback to developers, thereby improving
their productivity and the software quality [20]. CI has the effect of producing
shorter release cycles.

3.3 Infrastructure As Code

Infrastructure as Code (IaC) is an approach to provisioning and managing
dynamic infrastructure resources through machine-readable configuration files
[15,16,7]. It is also referred to as programmable infrastructure in reference to
the adaptation and application of practices and tools from software engineer-
ing on IT infrastructure management. As a result, changes to the computing
infrastructure and/or the execution environment are made in a structured way,
by means of reliable and established processes [7]. The benefits of IaC include
repeatability of creating and configuring execution environments, management
automation, development agility and infrastructure scalability [16].

3.4 Related Work

Software deployment is specified using semi-formal graphical notations, informal
diagrams, scripts, domain-specific languages (DSLs), and modelling languages.

The UML deployment diagram is a well-known notation that provides a
graphical language to describe a static representation of a system’s architecture.
Though it has been refined in several versions of the UML standard, it contin-
ues to be one of the least adopted diagrams among UML users [21] and within
the model-driven engineering (MDE) community [22]. This diagram allows to
specify only a portion of the required system elements (e.g., infrastructure pro-
visioning, network configuration and elasticity requirements [23,24]). UML lacks
the semantics for translating deployment diagrams into code, therefore exist-
ing transformation approaches limit the diagram semantics and the supported
technologies.

Wettinger et al. [25] propose i) a methodology to implement the DevOps
paradigm in practice with a high degree of automation; and ii) DevOpslang, a
DSL to deploy cloud applications. The purpose of DevOpslang is to bridge the
gap between developers and operators by supporting the proposed methodology.
Nevertheless, the automation considered in its design seems incomplete with re-
spect to its motivation: it only considers forward engineering, from development
to operations, leaving out the continuous cycle as advocated in DevOps. Thus,
offering no support at run-time.



DevOps Round-trip Engineering 5

Thiery et al. [26] address the problem of providing testers with an automated
and provider-independent method to deploy and test cloud applications. They
define a DSL that allows testers to describe how an application is deployed, and
which cloud resources are required and available for the deployment. The DSL
generates a set of provider-specific commands based on the providers’ command-
line applications. The authors claim to support a re-deployment scenario in their
evaluation, however, it is rather a deployment to a new cloud platform (i.e., a
new deployment). The proposed DSL does not consider any kind of support once
the application has been deployed.

Glaser [27] proposes a model-driven and topology-based framework that gen-
erates concrete deployment instances compliant with TOSCA. These instances
are derived based on a domain model specification whose parameters change over
time. The proposed framework updates the running infrastructure on user de-
mand. To achieve this, Glaser proposes a DSL to map domain modelling param-
eters to parameters of the cloud infrastructure. The proposed DSL implements
forward engineering only, providing no support on the operations side.

Holmes [28] proposes MING, a model and view based framework for describ-
ing and deploying cloud data centres. MING separates concerns into different
views, namely, inventory, networking and configuration, allowing stakeholders
to relate to concerns that are relevant to them. These views are realized by
an OpenStack-tailored DSL. MING allows to adapt an already deployed data
center, either adding new resources or providing software upgrades. As for the
aforementioned works, MING realizes forward engineering only.

Significant work has been done in automating the processes to integrate de-
velopment and operations better. IaC plays an important role in this effort, as it
enables the application of software engineering practices to infrastructure design
and management. However, there are still many opportunities to strengthen the
linkage between both sides of the DevOps development cycle. Moreover, emerg-
ing practices, such as continuous experimentation and feedback, require standard
and automated processes to integrate run-time data back into development.

4 Tornado: A Framework for RTE in DevOps

DESIGN TIME RUN TIME

Specification Run-time Support Layer Running Envionment
A

D C

B

Legend

Data flowArtefactComponentEnvironment

Fig. 1. High level overview of Tornado

The design-time artefacts supported by Tornado are text-based, structured
specifications. Our framework reconciles these specifications with their corre-
sponding elements from the running environment. To do so, we introduce a run-



6 DevOps Round-trip Engineering

time support layer that bridges D&C work from development and operations.
This layer contains models at run-time (MARTs) that represent the elements
from the running environment. These models are eventually transformed into
text to keep the specifications updated. Figure 1 depicts a high-level overview
of our framework. It shows how information flows between design- and run-time
through the run-time support layer.

We adhere to the MART definition proposed by Bencomo et al. [29]:

An MART can be defined as an abstract representation of a system,
including its structure, behaviour and goals, which exists in tandem with
a given system during the actual execution time of that system [...]

Tornado is based on Castañeda’s operational framework [30]. This frame-
work comprises four main components: a notation-model mapping, a catalogue
of operations to update the model’s instances, the run-time semantics from the
application domain, and causal links. The latter are used to propagate changes
among the models that are connected, as in the example presented in Section 2
about a software deployment specification associated with a network configu-
ration file. The models associated with these specifications must be causally
connected as follows: the software model references a host name defined in the
network model; when the latter changes, the change is propagated to the former,
so it is updated accordingly.

RUN-TIME SUPPORT

CODE REPOSITORY

Specification

Notation Notation model

Domain Domain model

MART Operations

Semantic validation 
rules

Domain model 
instance

Specification

MARTRepresents

Alters

Assesses

Conforms to

Conforms to

Is equivalentDescribes

Legend
Conceptual 
relationship

Modelling 
relationshipArtefactComponentEnvironment

Fig. 2. Tornado’s concepts

Figure 2 depicts what an MART is in terms of its internal components. In
Tornado, an MART is not only a model instance but a 3-tuple containing a
model instance, a specification instance (i.e., one or more files) and a set of se-
mantic validation rules. The model and specification instances are kept in sync
automatically. The validation rules check the quality of the model to guarantee
its integrity. For example, a computing resource may be given an IP address



DevOps Round-trip Engineering 7

outside its subnet range. A simple validation rule can discover this mistake,
avoiding the deployment of the whole infrastructure, offering quicker feedback
and spending fewer resources. Furthermore, these validations can be delegated to
other software components. In our example, the network configuration verifica-
tion can be delegated to simulation engines or network virtualisation platforms,
which can be run in memory without the need for deploying more resources.

As shown in Figure 2, an MART is associated with a set of operations.
Each operation contains the run-time semantics to alter the model instance. An
operation is associated with a set of Pre- and Post-validation rules, which check
the state of the model before and after altering it.

The relationship between a specification and an MART is detailed in Figure 2.
A MART conforms to a domain model, and must be equivalent to a notation.
That is, Tornado expects a one-to-one relationship between the specification
notation and its corresponding model. However, achieving such a relationship
is often difficult; it may be necessary to limit the facts that can be expressed
with the notation to guarantee said equivalence. To map the concepts from
one model to another, the pair model-specification is associated with a set of
transformations. For example, an MART representing the networking domain
can be set up to work with OpenStack HOT8 and/or HCL9 (i.e., Terraform
templates’ notation). Each of these configurations knows how to update the
model instance and the specification file, given a change in either of them.

RUN TIMEDESIGN TIME

Specification

Local Code Repository
Code Repository

Event Listener

Running Environment

Computing Platform

MART

Specification → MART

CI Server

MART

Operations

MART → Specification

Processing Infrastructure 
for MARTs

Pushes to

Pulls from

Pulls from
Updates

Notifies

Requests change

Deploys to

Pushes to

Pulls from

Modify Modify

IT OperatorDeveloper IT OperatorAutonomic
Manager

Legend

Data flowArtefactA→B Transformation
from A to BComponentEnvironment

Fig. 3. Continuous Integration loop in Tornado

Next, we describe the arrows A, B, C and D from Figure 1. These arrows are
later refined in Figure 3.

8 https://docs.openstack.org/heat/latest/template_guide (accessed Oct, 2018)
9 https://www.terraform.io/docs/configuration/syntax.html (accessed Oct, 2018)

https://docs.openstack.org/heat/latest/template_guide
https://www.terraform.io/docs/configuration/syntax.html


8 DevOps Round-trip Engineering

A: Specification→MART
This interaction is initiated by a developer. Once she pushes changes to
the version control repository, a CI server temporarily instantiates the cor-
responding MART based on the current version of the specification. If it
passes the quality checks and the MART is already deployed to the run-time
support layer, the existing MART is updated and the CI server proceeds to
apply the changes to the running environment. In case the MART is being
instantiated for the first time, a new instance is deployed.

B: MART→Running Environment
This interaction is not further explored in this paper, given our motivation to
integrate operations work in the opposite direction. Nevertheless, an MART
may update a running environment as part of the change propagation chain
from a causal connection, as described above.

C: MART←Running Environment
This interaction is initiated by a change in the running environment. A
listener catches an event propagated by the supporting platform and initiates
a procedure to update the MART instance accordingly.

D: Specification←MART
This interaction is initiated when an MART instance is updated by the
running environment it represents. A procedure is triggered to transform
the instance to the corresponding specification notation. The resulting text
is used to update the remote file in the version control repository.

Figure 3 depicts Tornado’s continuous integration loop. This loop extends
the concept of CI to frequently integrate changes into a running environment
into development. D&C specifications are usually treated in the same way as
application code. This traditional use of CI only considers integrating work at
the request of developers. It means that any kind of manual work would require
an operator to remember and translate data from one tool to another, from one
syntax to another, and possibly from one paradigm to another (e.g., imperative
to declarative). The continuous integration loop we propose automates that pro-
cess. Furthermore, DevOps engineers and operators are not the only actors who
modify a running environment. Autonomic managers have already assumed a
significant role in understanding run-time operations. Dynamic scaling policies,
for example, automatically scale computing resources in response to changing
service demand. The actions of these autonomic managers are not generally re-
flected in the specifications.

In our proposal, the CI server deploys the model directly to the processing
infrastructure instead of updating an already deployed model one event at a
time.



DevOps Round-trip Engineering 9

4.1 CI Considerations

This subsection discusses three main CI considerations regarding the implemen-
tation and adoption of Tornado. We outline concerns that could potentially
affect the development workflow, and propose alternative solutions.

C1: Contribution Model. Tornado enables the run-time support layer to
make code contributions. Although CI provides mechanisms to guarantee quality,
unsupervised changes can produce adverse effects. This can happen, for example,
due to an operation mistake or a bug in the run-time semantics associated with a
model. In addition to the committer model, in which the run-time support layer
is added as a collaborator to the repository (i.e., it is granted write access), we
propose the contributor model, in which code modifications are proposed as pull
requests rather than committed directly.

In the case of the committer model, there would be no delay in reflecting
the changes in the specifications. For this reason, this model would likely pro-
duce fewer merge conflicts. However, it does not mitigate the risk of unwanted
side-effects. In the case of the contributor model, the risk is completely avoided.
Nevertheless, additional time must be allocated to review the pull requests, de-
laying the update and increasing the possibility of merge conflicts. While a pull
request remains open, the MART instance is inconsistent with respect to the
specification or the running environment.

It is common today that computing platforms and autonomic managers make
decisions to affect a running system. Therefore, it is acceptable, at least in some
cases, to grant commit access to the run-time support layer. We believe that
providing both contribution alternatives is the best option.

C2: Conflict Resolution. Conflict resolution is not a trivial task. It requires
spending time inspecting the code and making informed decisions about the
merging conflict(s). Therefore, automating conflict resolution requires simplify-
ing the problem. We suggest two strategies to do so. First, we propose to avoid
conflicts related to formatting. The transformation from MART to specification
must follow a standard process, which always generates statements in the same
order, case and format (e.g., spacing and indentation). To facilitate following
these measures in development, we propose to use a formatting utility before
committing changes. And second, we propose to give priority to one of the ac-
tors (e.g., the run-time support layer). In case of merge conflicts, the run-time
support layer can decide to either drop the local changes or replace the remote
ones, according to its assigned priority level. The former requires to rollback the
latest changes to keep the MART instance consistent with the remote specifica-
tion.

C3: Quality Assurance. One of the most important parts of CI is the con-
tinuous application of quality control. Tornado re-uses the concept of pre-
and post-validation rules from Castañeda’s operational framework [30] to ensure
quality conditions before and after modifying the model. However, there may



10 DevOps Round-trip Engineering

be concerns regarding the model itself, rather than its state with respect to a
certain operation. For instance, referring to the example above about the IP ad-
dress outside of range. The state itself is erroneous, making it necessary to check
its quality before deployment. There are also other kinds of concerns related to
business restrictions; validations on the model instance allows, for example, to
limit what can be deployed by the tenant. These business restrictions can be im-
plemented as semantic restrictions on the model, as the model itself represents
entities from the rules’ domain.

5 Evaluation
In this section, we present a proof of concept implementation of Tornado. This
implementation covers all the topics discussed in Section 4, including the CI
considerations. The source code of this implementation is available in a Github
repository.10

RUN TIMEDESIGN TIME

HCL model (HCLM)

Virtual Infrastructure 
model (VIM)

Terraform Template

Local Git Repository Github Repository

OpenStack Event 
ListenerVirtual Infrastructure

OpenStack

Infrastructure MART

HCL AST → HCLM

HCLM → VIM

HCL Interpreter

CircleCI Container
Infrastructure MART

Processing Infrastructure for MARTs

VIM → HCLM

HCLM → Text

Pulls from
Pushes to

Pulls from

Conforms to

Conforms to

Pulls from

Pushes to

Requests change

Uses

Uses

NotifiesUpdates

Deploys to

Legend

Data flow RelationshipArtefactA→B Transformation
from A to BComponentEnvironment

Fig. 4. Evaluation Setup

Figure 4 depicts the evaluation setup. We chose the IaC tool Terraform and
the OpenStack platform to realise this proof of concept. Consequently, the nota-
tion specification is HCL (i.e., Terraform templates’ notation) and the running
environment is a virtual infrastructure. Figures 5 and 6 represent the HCL and
virtual infrastructure models, respectively. Notice that these models are limited
with respect to the entities they represent. However, they are complex enough
to demonstrate the usefulness and soundness of this framework.

The HCL and infrastructure models were developed using the Eclipse Xcore
project11, and the model transformations using the Xtend language12. The HCL
interpreter was developed using Eclipse Xtext13.
10 https://github.com/RigiResearch/jachinte-DevOps2018-evaluation
11 https://wiki.eclipse.org/Xcore (accessed Oct 2018)
12 http://www.eclipse.org/xtend (accessed Oct 2018)
13 http://www.eclipse.org/Xtext (accessed Oct 2018)

https://github.com/RigiResearch/jachinte-DevOps2018-evaluation
https://wiki.eclipse.org/Xcore
http://www.eclipse.org/xtend
http://www.eclipse.org/Xtext


DevOps Round-trip Engineering 11

Value

KeyValuePair

key : K

value : V

K

V

Dictionary

name : EString

TList

Number

value : EString

Text

value : EString

Bool

value : EBoolean = false

TextExpressionReference

FunctionCall

name : EString

ResourceReference

fullyQualifiedName : EString

Specification

Resource

resourceType : EString = resource

type : EString

name : EString

Variable

description : EString

Input Output

sensitive : EBoolean = false

[0..*] elements

[0..*] elements

[0..1] expression

[0..*] arguments

[0..*] resources

[0..1] attributes

[0..1] default [0..1] value

Fig. 5. HCL Model

StorageQuantity

java.lang.Object

ContainerFormat

AMI

ARI

AKI

BARE

OVF

DiskFormat

AMI

ARI

AKI

VHD

VMDK

RAW

QCOW2

VDI

ISO

KeyValuePair

key : K

value : V
K

V

Dictionary

K

V

VirtualInfrastructure

Flavor

name : EString

vcpus : EInt

disk : StorageQuantity

ram : StorageQuantity

Image

name : EString

containerFormat : ContainerFormat = ami

diskFormat : DiskFormat = ami

imageSourceUrl : EString

minDisk : StorageQuantity

minRam : StorageQuantity

Credential

name : EString

publicKey : EString

Volume

name : EString

description : EString

size : StorageQuantity

Subnet

name : EString

cidr : EString

ipVersion : EInt

Network

name : EString

SecurityRule

from : EInt

to : EInt

protocol : EString

cidr : EString

SecurityGroup

name : EString

description : EString

Instance

name : EString

UnknownResource

resourceType : EString

type : EString

name : EString

K

V

[0..*] elements

[0..1] image

[0..1] credential

[0..1] flavor

[0..*] networks

[0..*] volumes
[0..*] securityGroups

[0..1] attributes

[0..1] project

[0..*] images

[0..1] project[0..*] resources

[0..*] subnets

[0..1] network

[0..*] rules

[0..1] parent

[0..1] project [0..*] volumes

[0..1] project

[0..*] flavors

[0..1] project

[0..*] networks

[0..1] project

[0..*] securityGroups

[0..1] project

[0..*] credentials

[0..1] project

[0..*] instances

Fig. 6. Virtual Infrastructure Model



12 DevOps Round-trip Engineering

Next we describe the main components of the evaluation setup and describe
the development workflow associated with this implementation.

Infrastructure MART This MART is composed of a Terraform specification,
an instance of the Infrastructure model and a set of supported operations and
validations on the model instance. The specific operations supported at the time
of writing this paper are: adding a new resource and removing an existing one.
Supporting more operations requires implementing the interface Operation. As
an example, we added one semantic validation that constraints the RAM size
of any virtual machine instance to be launched. Adding more validations is pos-
sible by implementing the interface Rule. The MART ensures that the model
instance and the specification are always in sync, so any modification to one
another causes a synchronization process and a commit if necessary. When the
specification changes, the Terraform state is updated consequently. Before com-
mitting, the MART invokes the Terraform format command. Commit messages
end with “[skip ci]” to avoid unnecessary CI builds. However, CI could be used
to reinforce quality policies on operations (manual) work.

Processing Infrastructure for MARTs This component offers a service to
register or update an MART and execute operations on it. Registering a new
MART causes the corresponding code repository to be cloned. Updating an
existing MART causes its corresponding repository to be updated accordingly.

CircleCI Container This component uses the HCL interpreter to create an
Abstract Syntax Tree (AST) out of a Terraform template. It uses the AST to
instantiate the HCL model and then transforms it to an instance of the virtual in-
frastructure model. Then, it instantiates the Infrastructure MART and executes
the semantic validations associated with it. If the MART passes the validations,
it is deployed to the processing infrastructure for MARTs and the resources spec-
ified in the Terraform template are deployed. If the validations fail, the developer
is notified. This workflow is specified in a YAML14 configuration file containing
three jobs: validate_terraform, deploy_models and deploy_terraform.

5.1 Development Workflow

The development workflow is as follows. An operator creates a Terraform tem-
plate using OpenStack as cloud provider. When the template is pushed to the
Github repository, the CI server pulls the template and creates a local instance
of the Infrastructure MART based on the template. If the instance passes the
semantic validations (i.e., there are no instances violating the RAM constraint),
the MART is deployed to the processing infrastructure for MARTs. Then, the CI
server deploys the Terraform template, updating the OpenStack resources. The
event listener consumes the events generated by OpenStack but ignores them, as
these changes are authored by a known user name associated with the CI server

14 http://yaml.org (accessed Oct 2018)

http://yaml.org


DevOps Round-trip Engineering 13

and the changes have been already applied to the model. At this point, the tem-
plate and the OpenStack resources are in sync. When the operator modifies the
OpenStack resources (i.e., creates or removes resources using the Horizon dash-
board or the CLI client), the event listener gets a notification. It then executes
the corresponding operation on the MART by means of the processing infras-
tructure for MARTs. The MART adapts accordingly, committing and pushing
any modification to the template to the Github repository.

Fig. 7. Updates to the Terraform template on Github

Figure 7 depicts three screenshots taken from the test Github repository. The
first one displays the initial state of the template, as created by the developer
(i.e., user jachinte). The second and third screenshots display the template after
the processing infrastructure (i.e., PrIMoR on behalf of user miguel) committed
changes. In the last case, a new file is added and referenced from the template.

6 Conclusions and Future Work

There is a lack of standard processes and tools in DevOps to integrate operation
information back into development readily. In this paper, we focused on the lack
of automation support for updating D&C specifications from manual changes to
experimental setups. DevOps engineers and operators are in charge of keeping
these specifications consistent, remembering every change and translating them
from one syntax and paradigm to another. We presented Tornado, a two-way
CI framework (i.e., Dev CI−→Ops and Dev CI←−Ops) that keeps D&C specifications
always in sync with the systems they configure and deploy. We evaluated Tor-
nado by implementing a proof of concept based on Terraform templates and
the OpenStack platform, demonstrating its feasibility and soundness.

Although Tornado focuses on RTE for D&C, it potentially enables fur-
ther synchronisation between other design artefacts (e.g., architecture design)
and the D&C specifications, completing the continuous development loop. This
would provide operators and autonomic managers with a standard mechanism



14 DevOps Round-trip Engineering

to contribute to the evolution of the system. That is, their actions would directly
affect the development artefacts too.

Acknowledgments. This work was funded in part by the National Sciences and
Engineering Research Council (NSERC) of Canada, IBM Canada Ltd. and IBM
Advanced Studies (CAS), the University of Victoria (Canada), and Universidad
Icesi (Colombia).

References
1. Sharma, S., Coyne, B.: DevOps for Dummies. Limited IBM Edition (2013)
2. Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and Its Practices. IEEE Software

33(3) (2016) 32–34
3. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building Blocks for Con-

tinuous Experimentation. In: Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering. RCoSE 2014, New York, NY, USA, ACM
(2014) 26–35

4. Shahin, M., Babar, M.A., Zhu, L.: The intersection of continuous deployment
and architecting process: Practitioners’ perspectives. In: Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. ESEM 2016, New York, NY, USA, ACM (2016) 44:1–44:10

5. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development: From data to a data-driven or-
ganization at scale. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering. ICSE 2017 (2017) 770–780

6. Schermann, G., Cito, J., Leitner, P.: Continuous experimentation: Challenges,
implementation techniques, and current research. IEEE Software 35(2) (2018)
26–31

7. Morris, K.: Infrastructure As Code: Managing Servers in the Cloud. 1st edn.
O’Reilly Media, Inc. (2016)

8. Spanoudakis, G., Zisman, A. In: Inconsistency Management in Software Engi-
neering: Survey and Open Research Issues. World Scientific Publishing Company
(2012) 329–380

9. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: From metaphor to theory
and practice. IEEE Software 29(6) (2012) 18–21

10. Henriksson, A., Larsson, H.: A Definition of Round-Trip Engineering. Technical
report (2003)

11. Sendall, S., Küster, J.: Taming model round-trip engineering. In: Proceedings of
Workshop on Best Practices for Model-Driven Software Development. (2004) 1

12. Hettel, T., Lawley, M., Raymond, K.: Model Synchronisation: Definitions for
Round-Trip Engineering. In Vallecillo, A., Gray, J., Pierantonio, A., eds.: The-
ory and Practice of Model Transformations, Berlin, Heidelberg, Springer Berlin
Heidelberg (2008) 31–45

13. Shahin, M., Ali B., M., Zhu, L.: Continuous Integration, Delivery and Deployment:
A Systematic Review on Approaches, Tools, Challenges and Practices. IEEE Access
5 (2017) 3909–3943

14. : ISO/IEC/IEEE International Standard - Systems and software engineering –
Vocabulary. ISO/IEC/IEEE 24765:2010(E) (2010) 1–418

15. Hüttermann, M. In: Infrastructure as Code. Apress (2012) 135–156



DevOps Round-trip Engineering 15

16. Nelson-Smith, S.: Test-Driven Infrastructure with Chef: Bring Behavior-Driven
Development to Infrastructure As Code. O’Reilly Media, Inc. (2013)

17. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10) (Oct
2009) 22–27

18. Rahm, J., Graube, M., Urbas, L.: A proposal for an interactive roundtrip engi-
neering system. In: 2017 22nd IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA). (Sept 2017) 1–7

19. Tilley, S.R., Wong, K., Storey, M.A.D., Müller, H.A.: Programmable Reverse Engi-
neering. International Journal of Software Engineering and Knowledge Engineering
04(04) (1994) 501–520

20. Fitzgerald, B., Stol, K.J.: Continuous software engineering: A roadmap and agenda.
Journal of Systems and Software 123 (2017) 176–189

21. Petre, M.: UML in Practice. In: Proceedings 35th International Conference on
Software Engineering. ICSE 2013, Piscataway, NJ, USA, IEEE Press (2013) 722–
731

22. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven Engineering Practices in
Industry. In: Proceedings 33rd International Conference on Software Engineering.
ICSE 2011, New York, NY, USA, ACM (2011) 633–642

23. Inzinger, C., Nastic, S., Sehic, S., Vögler, M., Li, F., Dustdar, S.: MADCAT: A
Methodology for Architecture and Deployment of Cloud Application Topologies.
In: Proceedings 8th International Symposium on Service Oriented System Engi-
neering. SOSE 2014, Oxford, UK (2014) 13–22

24. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: An Extensible Lan-
guage for Controlling Elasticity in Cloud Applications. In: Proceedings 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
CCGrid 2013 (2013) 112–119

25. Wettinger, J., Breitenbücher, U., Leymann, F.: DevOpSlang - Bridging the Gap
between Development and Operations. In Villari, M., Zimmermann, W., Lau,
K.K., eds.: Service-Oriented and Cloud Computing. Volume 8745. Springer Berlin
Heidelberg (2014) 108–122

26. Thiery, A., Cerqueus, T., Thorpe, C., Sunyé, G., Murphy, J.: A DSL for Deploy-
ment and Testing in the Cloud. In: Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation Workshops. ICSTW
2014, IEEE Computer Society (2014) 376–382

27. Glaser, F.: Domain Model Optimized Deployment and Execution of Cloud Appli-
cations with TOSCA. In Grabowski, J., Herbold, S., eds.: System Analysis and
Modeling. Technology-Specific Aspects of Models. Volume 9959. Springer Interna-
tional Publishing (2016) 68–83

28. Holmes, T.: Ming: Model- and View-Based Deployment and Adaptation of Cloud
Datacenters. In Helfert, M., Ferguson, D., Méndez Muñoz, V., Cardoso, J., eds.:
Cloud Computing and Services Science. Volume 740. Springer International Pub-
lishing (2017) 317–338

29. Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Issarny, V.: The role of mod-
els@run.time in supporting on-the-fly interoperability. Computing 95(3) (Mar
2013) 167–190

30. Castaneda, L.: Runtime Modelling for User-Centric Smart Applications in Cyber-
Physical-Human Systems. PhD Thesis, Department of Computer Science, Univer-
sity of Victoria (2017)


	DevOps Round-trip Engineering
	Introduction
	Motivation
	Fundamentals and Related Work
	Round-Trip Engineering
	Continuous Integration
	Infrastructure As Code
	Related Work

	Tornado: A Framework for RTE in DevOps
	CI Considerations
	C1: Contribution Model.
	C2: Conflict Resolution.
	C3: Quality Assurance.


	Evaluation
	Infrastructure MART
	Processing Infrastructure for MARTs
	CircleCI Container

	Development Workflow

	Conclusions and Future Work


