
Round-trip Software Engineering in DevOps:
Making the Infrastructure a Code Committer

Miguel Jiménez, Hausi A. Müller
{miguel, hausi}@uvic.ca

Norha M. Villegas, Gabriel Tamura
{nvillega, gtamura}@icesi.edu.co

March 5-6, 2018
Toulouse, France

PROVISION INSTALL ACTIVATE UPDATE ADAPTDESIGN & DEVELOPMENT

2

• Infrastructure to realize Deployment & Configuration (D&C)
• Industrial IoT and large CPS are a reality

Software Deployment

• Data sources
• Data storage
• Data mining
• Data visualization
• Backend services

• Networking devices
• Computing devices
• IoT devices
• Virtual devices

Network

Hardware

Software

• Networks, subnets, ports
• Security groups and access rules
• SDN/NFV

• Specification occurs at design time
• Managing resources occurs at runtime

• Stakeholders expect documentation in
different levels of detail and abstraction

• How do tools support linking design and
runtime deployment concepts?

Dev

Ops

Miguel	A.	Jiménez,	Norha	M.	Villegas,	Gabriel	Tamura,	Hausi	A.	Müller:	Deployment	Specification	challenges	in	the	context	of	large	scale	systems.	CASCON	2017:	220-226

Deployment Specification Challenges

Notations for specifying and visualising
deployments from different perspectives

and levels of abstraction

CH1

Deployment notations to support
cross-cutting concerns

CH2

Notation and tool support for linking
design and runtime deployment

concepts

CH3

Tool support for the evolution of
deployment specifications and

configuration management at runtime

CH4

3

*	Nugroho,	Ariadi,	and	Michel	RV	Chaudron.	"A	survey	of	the	practice	of	design--code	correspondence	amongst	professional	software	engineers."	Empirical	Software	Engineering	and	
Measurement,	2007.	ESEM	2007.	First	International	Symposium	on.	IEEE,	2007.

Bidirectional Traceability

4

CH4
Systematic approaches to maintain the correspondence between design and code
are rarely used in practice*

NetworkHardwareSoftware

Design
e.g., Informal Diagrams, UML

Software
Deployment

Deployment Specs
e.g., TOSCA, OpenStack HOT

Dev
Sources of

Deployment evolution

Web admin
e.g., OpenStack Horizon

CLI
e.g., OpenStack CLI

Configuration management
e.g., OpenStack HEAT

Ops

Management Tools

Automatic runtime changes
e.g., Scaling policies

The most common
ones break the

semantic
correspondence !

*	Nugroho,	Ariadi,	and	Michel	RV	Chaudron.	"A	survey	of	the	practice	of	design--code	correspondence	amongst	professional	software	engineers."	Empirical	Software	Engineering	and	
Measurement,	2007.	ESEM	2007.	First	International	Symposium	on.	IEEE,	2007.

Bidirectional Traceability

5

SCENARIO 1: Correspondence Mismatch

1. Developer specifies deployment using OpenStack HOT
2. Developer deploys the system
3. Ops engineer increases VM’s properties
4. Developer adds memory-intensive component
5. Developer cannot re-use deploy. spec as it is because

of correspondence mismatch
6. Dev/Ops engineers manually re-deploy the system
7. Agility is broken

SCENARIO 2: Informal Collaboration

1. Developer specifies deployment using the most
powerful VM (MPVM)

2. MPVM is not enough. Developer replicates the
service

3. Infrastructure provider adds new machines, more
powerful than MPVM

4. Developer never finds out and keeps using
replicated MPVM

5. Waste of resources. Costs are higher

CH4
Systematic approaches to maintain the correspondence between design and code
are rarely used in practice*

Continuous Integration

• Infrastructure-as-Code: Deployment
specifications are eventually translated into code
• Continuous integration is the solution ! Isn’t it ?

6

Where are all these changes
logged?

How can they be traced back
to their source?

How and when are stakeholders
notified about these changes?

Software
Deployment

Deployment Specs
e.g., OpenStack HOT

Dev

Web admin
e.g., OpenStack Horizon

CLI
e.g., OpenStack CLI

Configuration management
e.g., OpenStack HEAT

Ops

Management Tools

Automatic runtime changes
e.g., Scaling policies

Version
control

repository

CI
✘

Continuous
Integration

CI + Round-trip Engineering

• Specifications can be managed through version control
• Each specification is represented by a model instance at runtime
• Specifications and model instances are kept in sync

7

What if the infrastructure becomes a committer?

MART instancesDeployment Specifications

Infrastructure.yaml

Network.yaml

Software.yaml

Version control
repository

Pull/Push

Pull/Push

Network
Infrastructure

Software

…

Continuous
IntegrationDevelopment Operations

Ops Engineers Autonomic capabilitiesOps Engineers

Dev Engineers

*	Castañeda,	Lorena.	“Runtime	Modelling	for	Smart	User-centric	Cyber-Physical-Human	Applications”.	PhD	thesis,	2017

CI + Round-trip Engineering (cont’d)

• Specifications can be managed through version control
• Each specification is represented by a model instance at runtime

8

What if the infrastructure becomes a committer?
Specifications are always

up to date !

Infrastructure.yaml

Network.yaml

Software.yaml

Version control
repository

Pull/Push MART

Operations

Notation

MART
Infrastructure

Instance-Specification
Translator

Pull/Push

RUNTIME SUPPORT *

Web admin
e.g., OpenStack Horizon

CLI
e.g., OpenStack CLI

Configuration management
e.g., OpenStack HEAT

Automatic runtime changes
e.g., Scaling policies

APIs
e.g., Neutron

Contribution Model

9

1. The infrastructure as a committer
Pros

• No delay to reflect changes (instantaneous round-trip engineering)
• Less merge conflicts

Cons
• Risk: unsupervised changes can break the system

2. The infrastructure as a contributor (fork + pull request)
Pros

• No risk
Cons

• Delay to reflect changes
• Extra time spent reviewing changes
• Merge conflicts are expected

Pragmatic approach: certain type
of changes are directly committed,

while others are requested

Conflict Resolution

10

Pragmatic approach: the strategy
to follow depends on the type of

change to merge

1. Reliable Strategy (play safe) 2. Best Effort Strategy

Any change performed at
runtime is discarded

Any change performed at
design time is discarded

One actor has priority
over the other

If the upstream changes
aren’t related to local
changes, try to merge

CI Principles

11

Traditional CI approach (functional code)

✔ Maintain a code repository
✘ Automate the build
✘ Make the build self-testing
✔ Everyone commits to the baseline every day
✘ Every commit (to the baseline) should be built
✘ Keep the build fast
✘ Test in a clone of the production environment
✔ Make it easy to get the latest deliverables
✘ Everyone can see the results of the latest build
✘ Automate deployment

What are the corresponding
items for deployment code?

MART

Deploy MART &
Update system

CHALLENGE

Quality assurance

Scenario 1 Revisited

12

infrastructure-v0.1.0.yaml

1. Developer specifies deployment

$ deploy infrastructure-v0.1.0.yaml

2. Developer deploys the system

3. Ops engineer increases VM’s properties

$ git pull & vim ...
$ re-deploy infrastructure-v0.2.0.yaml

4. Developer modifies the spec. and re-deploys the system

On action

On push

• MART is instantiated
On push

• MART is updated
• MART is translated into spec
• Specification is updated

• MART is updated from spec

Seamless collaboration
of Dev & Ops roles !

Deployment Evolution (Future Work)

13

• Based on a current deployment spec. and the same spec. with some changes,
find the execution workflow to realise those changes

• Deployment tools already offer some primitive way to update deployments

Automated Continuous
Deployment

à

spec-v1.0.yaml spec-v1.1.yaml

=
v1.0 v1.1

?
Deployment Specifications Deployment Workflow

Deployment Evolution (cont’d)

14

VisualStudio Code

Eclipse

Web Platform

Version control
repository

Pull/Push

MART Support
Notify

APIs
e.g., Neutron

MAPE-KMAPE-KMAPE-K

CI Server

Pull/Push
1. Quality assurance?

2. Tool support

Update

3. Self-adaptive systems

15

Conclusions
1. Problem:
Broken semantic correspondence

3. Future work:
Quality assurance & Continuous deployment

2. Solution:
Two-way Continuous Integration

