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ABSTRACT
Traditionally, the focus of software deployment has been mainly on
the infrastructure to realise deployment and configuration (D&C)
of complex and distributed systems, with an increasing interest
in deployment of internet of things and cyber-physical systems.
Advances in job scheduling, storage orchestration, containerized
applications, along with agile practices such as continuous inte-
gration and microservices architecture, have improved the state
of the practice. However, little effort has been devoted to the need
for D&C specifications to support the various levels of detail and
abstraction present in large-scale systems. The understanding of
the software components hierarchy has shifted from the compre-
hension of design artefacts, usually specified with static diagrams,
to the understanding of runtime concepts. The DevOps movement
has dramatically influenced how and when deployment is realised,
but little has been done from the software perspective in terms of
documentation and linkage between design and runtime artefacts
in the sense of software specification as such. This paper presents
an overview of the state of the art of deployment requirements
for large-scale, distributed and complex software and its automa-
tion and characterises a set of deployment specification challenges
intended as starting points for advancing the field of software de-
ployment.

CCS CONCEPTS
• Computer systems organization → Distributed architectures;
• Software and its engineering → Software post-development
issues;

KEYWORDS
DevOps, Continuous Software Deployment, Deployment Specifica-
tion, Continuous Integration, Continuous Configuration, Runtime
Artefacts, Models at Runtime

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’17, November 2017, Markham, Ontario, Canada
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

ACM Reference format:
Miguel Jiménez, Norha M. Villegas, Gabriel Tamura, and Hausi A. Müller.
2017. Deployment Specification Challenges in the Context of Large Scale
Systems. In Proceedings of 27th Annual International Conference on Computer
Science and Software Engineering , Markham, Ontario, Canada, November
2017 (CASCON’17), 7 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Today’s development environments offer great tool support to as-
sist engineers in executing, configuring and monitoring software
components. Furthermore, advances in infrastructure management
facilitate server provisioning and application deployment and rede-
ployment. However, there is little support for mapping each compo-
nent to the corresponding artefacts at runtime. Tool support on the
software side has not advanced at the same pace as infrastructure
management has. Deployment specifications are mostly used as
static documentation that poorly reflects the actual information
required to deploy a system. Moreover, deployment specification
tools lack support for different levels of domain expertise and col-
laboration among the various stakeholders. The proliferation of
cloud, container and microservices infrastructure has amplified the
need for deployment specification.

Architecture and deployment specifications are vital in under-
standing the different parts composing a system [17]. Proper tool
and notation support will have the effect of promoting specification
reuse; and more importantly, automating and tracking continuous
deployment and configuration. This technology will provide en-
gineers with the means to understand complex systems, such as
large-scale smart cyber-physical systems (CPS), from different per-
spectives. Furthermore, it will provide systems with a foundation
to build mechanisms to reason about their needs and exploit other
systems. To do this, engineers require a deployment specification
that is complete in detail, but also tools to navigate and visualise
the system. They require a specification that supports specifying
cross-cutting concerns, such as quality and security requirements
[12]. Moreover, specification technology must offer support for
explicitly linking design and runtime concepts. In this paper, we
expand on the aforementioned needs, and state a set of challenges
in deployment specification with the aim of advancing the field of
software deployment.

https://doi.org/10.475/123_4
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The remainder of this paper is organised as follows: Section 2
presents a motivational example along with a high-level description
of the requirements for deploying large-scale systems. Section 3
states our vision regarding deployment specification technology.
Section 4 presents an overview of the state of the art in the field of
software deployment. Section 5 lists a set of deployment specifica-
tion challenges aligned with our vision. And Section 6 concludes
this paper.

2 MOTIVATIONAL EXAMPLE
We present a motivational example highlighting relevant deploy-
ment concerns in the context of a modern large-scale system, with-
out considering the details of the underlying application architec-
tures or technologies.

Figure 1 depicts a CPS for smart transportation in the context
of a smart city. The various components illustrated are inspired by
Sipresk [18], a platform for performing analytics on urban trans-
portation data. On the one hand, the rungs in the illustration repre-
sent a multi-tier software architecture composed of layers ranging
from the physical infrastructure to the visualisation of data an-
alytics. On the other hand, the columns represent cross-cutting
dimensions of the system, in which different actors perform differ-
ent tasks and have diverse interests and expectations.

The smart transportation system comprises several interacting
applications that may be managed by several teams, implemented in
different technologies, and governed by different policies. There are,
however, executive stakeholders interested in understanding the so-
lution as a whole, such as transportationmanagers, traffic engineers,
and decision makers. There are also technical stakeholders inter-
ested in knowing the necessary details and quality requirements
for each subsystem. Moreover, these stakeholders may belong to
different teams and, therefore, they profoundly depend on require-
ments specification to accomplish their responsibilities. Although
the applications composing the system may be developed inde-
pendently, possibly in different contexts, they share physical and
logical resources. Quality expectations of stakeholders about these
resources impose functional and non-functional requirements that
constrain, in particular, the deployment and configuration (D&C)
of the system.

The diagram depicted in Figure 1 represents a holistic abstraction
of the system. It is intended to highlight the various subsystems
composing the solution. Such abstraction, however, tells little if
anything to an operations engineer about the deployment of the
subsystems. One single diagram is insufficient to offer high-level
views of the system, the applications, the underlying infrastructure,
and, at the same time, detailed technical views and deployment
topologies. Those views constitute relevant artefacts for the various
system actors to communicate and understand concerns they have
about the system, related to design, such as the UML’s use case
and component diagrams; development, such as the UML’s activity
and sequence diagrams; testing, such as context diagrams and flow
charts; and D&C, such as the UML’s deployment diagram. However,
these diagrams become out of date very quickly with any change
in the configuration.

Figure 1: Layers and Dimensions of a Smart Transportation
System

The deployment process of the smart transportation system
involves many cross-cutting concerns such as connectivity, perfor-
mance, and security requirements, as well as resource availability,
policies and best practices [12]. Different domain experts and tech-
nical staff are responsible to address these concerns, which makes
deployment specification a complicated process. Moreover, the var-
ious applications composing the system may be independently
deployed in different environments, such as development, staging,
quality testing, and production, each having specific requirements.

Deployment automation is essential to reduce personnel require-
ments and improve collaboration and knowledge reuse. It also
reduces deployment complexity, guarantees configuration integrity
and consistency, and allows separation of concerns [12]. Speci-
fication plays a key role in automating deployment; it supports
the aforementioned desired properties, and enables incremental
collaboration between actors across the multiple dimensions en-
compassing the smart transportation system.

3 OUR VISION
We envision a deployment technology that supports the reuse of
deployment specifications and automation, as well as collaboration
among the various actors involved in specification creation and
evolution. This technology allows connecting human and machine
readable representations of the software components and comput-
ing infrastructure. Deployment specification tools must maintain
the correspondence between all these representations, including
changes that occur at design and execution time.

Specification tools must support the modelling of software de-
ployment at different levels of abstraction. This is key for under-
standing the deployment of a system from different perspectives,
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and for promoting reusability. These tools must orchestrate the ex-
ecution of distributed causally-connected specifications developed
within the context of each component. For instance, in the case
of back-end technology, a system deployment could rely on exist-
ing mechanisms for configuring and activating each component
in the same way an object instantiates another in object-oriented
programming. Such technology would reduce the time invested in
deployment design, as it allows reusing specifications and enables
stakeholders to focus on a smaller set of concerns.

4 OVERVIEW OF THE STATE OF THE ART
This section discusses relevant prior works in the area of software
deployment. We show that research has been mainly focused on
the infrastructure to realise D&C of software systems. The primary
focus in existing works is on D&C infrastructure for grid computing
and distributed real-time embedded (DRE) systems [25], with an
increasing interest in IoT and CPS.

4.1 Deployment for Large-Scale Infrastructures
DeployWare [14] addresses the deployment of distributed and het-
erogeneous software systems on large scale infrastructures. It is a
Fractal [5] based framework for the orchestration of deployment
tasks and management of software dependencies. It provides a do-
main specific modelling language (DSML) to describe deployments
based on a meta-model, a virtual machine that interprets these de-
scriptions, and a graphical console to manage and monitor deployed
systems. The metamodel as well as the DSML are focused on the
installation, configuration, activation, and deactivation of software
artefacts. Its deployment specifications are heavily related to the
artefacts and their corresponding computing nodes. Although it
does consider different technical roles such as, system administra-
tor and technology expert, its deployment specifications are not
suitable to be analysed by executive staff. We find them limited
in the context of large-scale systems, as described in Section 2.
DeployWare lacks support for application reconfiguration.

GoDIET [6] is a tool for the configuration, launch, and man-
agement of DIET [7] applications. It expects as input an XML file
describing available computing and storage resources, along with
a desired distribution of DIET agents on the resources. From such
description, GoDIET generates all necessary configuration files, and
launches agents and servers in appropriate hierarchical dependency-
aware order. GoDIET limits the deployment specification to the
input XML file. There are two main concerns in such file: storage
and computing devices, and the hierarchy of deployment agents.
GoDIET lacks support for application reconfiguration.

Toure et al. [27] present a decentralised and hierarchical deploy-
ment approach using the TUNe [4] autonomic management system.
Their solution takes into account the topology and characteristics
of the computing grid via a deployment schema. The schema is a
UML profile that describes low-level deployment properties such
as whether or not to use a log service, or a flush interval. These
properties are then mapped to a group of nodes from a grid schema
that describes the computing infrastructure. The main contribution
of this work resides in its hierarchical approach to deployment;
every task is divided into less complex subtasks, and managed by an
independent TUNe instance. This is of particular relevance when

deployments involve thousands of computing nodes (e.g., IoT or
COS applications). In such scenarios, centralised approaches do not
scale well because the master node tends to run out of resources.

The OMG D&C specification [21] defines standard formats for
metadata, and interfaces to facilitate the D&C of component-based
applications. It standardises many aspects of the component appli-
cation development life cycle, including component configuration,
assembly, packaging, and package configuration and deployment.
The standard also defines a deployment process that starts after the
software is packaged and published, and establishes stages rang-
ing from the software installation to its launch. We find this D&C
standard is nicely aligned with our vision, in the sense that there is
a clear separation of responsibilities per actor across the develop-
ment and deployment stages. It also defines independent models
to describe the application assembly and the target environment.
However, this standard is intended for component models, leaving
out the myriad of technologies that actually interact in large-scale
systems.

The Deployment and Configuration Engine (DAnCE) [9] is a
QoS-enabled middleware compliant with the OMG D&C specifica-
tion. It simplifies the configuration, deployment, and management
of application services in the context of large-scale distributed
real-time and embedded (DRE) systems. The Locality-Enhanced
Deployment and Configuration Engine (LE-DAnCE) [22] extends
DAnCE, overcoming the lack of appropriate optimizations specific
to the architecture from the OMG D&C standard. According to
[22], the architecture yields various overhead sources that cause
performance bottlenecks, thus negatively affecting deployment
latency.

Copil et al. [8] present SYBL, a composable and extensible lan-
guage for controlling elasticity in cloud applications. SYBL’s di-
rectives allow controlling elasticity by defining relations between
elastic properties categorised into three dimensions, namely cost,
quality and resource. Although SYBL does not provide deployment
mechanisms, its simple yet powerful syntax allows representing
first-class elasticity conditions that would be otherwise hidden in
programming code. For instance, Cons: CONSTRAINT cpuUsage
< 80% creates a constraint at the application level to maintain the
CPU utilisation under 80%.

Eilam et al. [12] present a model-driven approach that allows
reusing application deployment through an annotation mechanism
to configure different deployment properties. Application develop-
ers describe the structure of the application and its requirements as
a logical application topology. This topology represents the applica-
tion components, and their connectivity, hosting, and configuration
requirements. From there, application deployers and business users
annotate the logical topology with additional requirements such as
performance and security. Although their prototype only produces
network configurations, we find it very aligned with our vision.
Their approach enables domain experts to define model transforma-
tions and constraints in their area of expertise, taking complexity
away from the end application deployer. Eilam et al. [11, 13] extend
this work to bridge the gap between existing imperative scripts and
declarative model-based planning and validation. Their work en-
forces a strict separation between resource structure representation
and the operational model.
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4.2 Deployment for Cyber-Physical Systems
In CPS, D&C of the various application components must happen in
a timely manner. In mission-critical CPS, D&C capabilities are also
expected to be reliable and failure tolerant, where failure recovery
is timely and predictable, and minimises the negative impact on
quality of service. Moreover, mission-critical CPS are exposed to
frequent redeployment and reconfiguration, including incremental
D&C of its constituents, which to some extent must be supported
predictably [26]. That is, mission-critical CPS require support for
uncertainty management within their deployment mechanisms.

In Extensible CPS, both the applications and the computing re-
sources in which these systems are deployed are highly dynamic.
In [25], Pradhan extends LE-DAnCE to achieve a resilient D&C
infrastructure to deploy CPS applications and dynamically recon-
figure them once they are deployed. Pradhan’s infrastructure imple-
ments distributed group membership, a mechanism to detect when
nodes leave or join a cluster of available resources for deployment.
This approach also implements a mechanism for state preserva-
tion in case of failure, by distributing node-specific deployment
plans. However, the state is stored in memory, which is vulnerable
to process failures. As described in [25], application deployment
is specified using a global deployment plan, which describes the
various application components, their implementation, and the way
to connect them. This approach does not consider all the differ-
ent requirements and restrictions associated with the D&C of CPS,
and is rather focused on the component topology specific to the
Lightweight CORBA Component Model. Thus, it does not support
infrastructure provisioning and configuration. In light of our vision,
Pradhan’s contribution is focused on deployment execution, rather
than its design and evolution.

CPS and IoT applications integrate an ever-increasing number
of heterogeneous devices to be aware of their environment, and to
manipulate it. These devices often provide constrained execution en-
vironments with limited capabilities. DIANE [28] is a framework for
the generation of deployment topologies for IoT cloud applications,
and respective provisioning of the available physical infrastructure.
DIANE is based on MADCAT [17], a methodology for architecture
and deployment of cloud application topologies. It uses a declarative
language to describe technical units (i.e., application components),
deployment units (i.e., infrastructure requirements), and deployment
instances (i.e., concrete deployments on actual machines of the in-
frastructure). Although the deployment units and instances are
constraint-based, the technical units require a procedural workflow
specification per artefact. As DIANE is based on MADCAT, the
main concerns approached are related to deployment realisation,
rather than the requirements we established in Sections 2 and 3.

4.3 Discussion
Large-scale deployment is traditionally approached by addressing
the size and complexity of the computing infrastructure [6, 14, 27].
In this scenario, complexity revolves around issues that arise during
deployment execution, such as synchronisation and proper execu-
tion order of workflow tasks, failure detection, and state preser-
vation. These issues become more manageable in the SOA world
(e.g., the microservices architecture), in which each service may be

deployed independently on its own infrastructure resources, and
scalability is mainly managed at runtime.

As presented in Section 2, modern large-scale systems pose ad-
ditional deployment requirements. These requirements are rather
related to how systems are engineered and managed, instead of
the infrastructure supporting their execution. We believe that de-
ployment specification plays an important role in fulfilling the
aforementioned emerging requirements.

Novel technologies such as containerised applications and mod-
ern job orchestration are fading away direct management of com-
puting resources (i.e., computing resources lose their identity). This
is of particular relevance for our vision, because there is a clear
separation between infrastructure management and application
deployment. However, this poses new challenges in terms of the
mapping between the software artefacts and the runtime concepts
understood by such technology.

5 RESEARCH CHALLENGES
In Sections 2 and 3 we defined the requirements for the deployment
of large-scale, distributed and complex software, and its automation.
We now characterise four deployment specification challenges (i.e.,
CH1-4) aligned with our vision, as a starting point for advancing
the field of software deployment. We believe there is a clear need for
better specification notations, however, deployment specification
and evolution tools are the real enablers for their adoption.

5.1 CH1: Completeness and Expressiveness of
Deployment Specification

Stakeholders expect documentation that is compliant with the ap-
plication under development in different levels of detail and ab-
straction [17]. This requires notations with the proper power of
expression for specifying the various concerns encompassing D&C,
and tools to navigate and visualise these specifications.

To the best of our knowledge, deployment is specified using
either UML, informal diagrams, code (i.e., textual models), or a
combination of them. However, we believe it is necessary to perform
a systematic literature review to determine and characterise the
elements involved in D&C and the notations available to specify
them.

The UML deployment diagram is a well-known notation for de-
scribing the architecture of a software system. It provides graphical
elements to represent a static perspective of the various elements
involved in the deployment life cycle. It has been refined in sev-
eral versions of the UML specification, yet it remains to be one of
the least adopted diagrams within the Model-Driven Engineering
(MDE) community [16], and among UML users [24]. According to
a survey conducted in 2007 with 80 professional developers [20],
Nugroho and Chaudron found that most UML models have a low
degree of completeness; that is, they specify only a small part of
the required system elements. In the case of the UML deployment
diagram, some elements from the software, hardware and network
perspectives remain missing, including requirements for infrastruc-
ture provisioning (e.g., storage, memory, and processing capacity
of the computing nodes), network configuration requirements (e.g.,
network security zones and access rules) as well as elasticity re-
quirements [8, 17]. The software part, however, is incomplete for
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a different reason. The level of abstraction needs to be at a higher
level than it actually allows when working with large scale systems.
Currently, the diagram does not scale up well, enforcing the cre-
ation of a bloated specification or many specifications containing
duplicate elements. This is mainly because deployment specifica-
tion tools are intended for producing static documentation, instead
of managing the software as a dynamic entity where the configura-
tion changes over time. The benefit of using UML in this context
is then limited to communicating architectural decisions, affecting
little of the actual deployment.

Informal diagrams are non-standard graphical notations used
to communicate insights regarding an application deployment. As
these diagrams are simple in syntax and semantics, they are popular
in environments with lean documentation requirements. However,
they are not machine readable. D&C for large-scale systems requires
a specification that enables automation, and therefore, specification
tools should support the integration of existing notations. As men-
tioned in Section 3, deployment tools must allow connecting human
and machine readable representations of the elements involved in
D&C.

5.2 CH2: Specification of Transversal Concerns
Two important concerns associated with software deployment
are infrastructure provisioning and application deployment. New
trends in software engineering bring both concerns together in
scenarios of continuous integration and deployment. D&C is a
responsibility shared by various teams, including design, develop-
ment, operations, and security. Therefore, the notation used should
allow specifying transverse information along with the necessary
details for these teams to design high-level guidelines (e.g., architec-
tural patterns and security policies) and orchestrate provisioning
and deployment tasks collaboratively. In addition, these specifica-
tions have a documentation role and are especially beneficial for
new members of the team and people who do not participate in
their creation [15].

Different technical levels of stakeholder proficiency must be con-
sidered in the development of D&C specifications. Specification
tools must provide high-level views of the application architecture
and its deployment to executive stakeholders but also offer detailed
technical views for specialised staff [17]. Architecture Description
Languages (ADL) are essential in realising this, given the relation
between architecture and deployment. However, ADLs do not sup-
port multiple views and are often awkward to use in the workplace
because of lack of good tools [23]. One notation may not be enough
to express different levels of abstraction adequately. It is vital that
these tools and notations allow the connection of the specifications
(i.e., establishing dependencies among them), as well as the runtime
models1 that represent them.

5.3 CH3: Linking Design and Runtime
Deployment Concepts

Traditionally, the mapping between design and runtime concepts
for deployment has been rather direct. In Java EE, for example,
Web application ARchives (WAR) and Java ARchives (JAR) are the

1Also found in literature as models@run.time [3]

manifestation of at least one software component. This relation-
ship is directly represented in the UML deployment diagram with
a manifest relationship connecting the component(s) and the arte-
fact. As a result, the workflow procedures contain the necessary
code to build the component(s) into a compressed file. Modern
deployment tools introduce new concepts that require manual map-
ping to take advantage of deployment automation mechanisms. As
an example, Kubernetes,2 a container orchestration tool for auto-
mated container deployment, scaling, and management, requires
as input descriptors in terms of Pods, Services, Namespaces, Jobs,
ReplicaSets, DaemonSets, among others; similar cases are Mesos
Marathon,3 Singularity,4 and Apache Aurora.5 The latter requires
a configuration file written in a python-based Domain Specific
Language, which increases the level of difficulty in a scenario of
generative configuration.

Systematic approaches to maintain the correspondence between
diagrams and code are rarely used in practice (e.g., UML models
[19]). However, software and its deployment specification evolve
over time. As this mapping between software and runtime deploy-
ment concepts becomesmore complex, staff skills required to realise
software deployment are higher.

Linking D&C specifications and runtime models facilitates D&C
requirements realisation and documentation maintenance. Further-
more, establishing causal connections among these models provides
systems with support for change propagation across the different
dimensions encompassing them. There is a need for libraries and
frameworks to connect specifications with their runtime represen-
tation.

5.4 CH4: Adaptivity and Configuration
Management at Runtime

The dynamic nature of the cloud computing paradigm enables ar-
chitectural agility that allows applications to evolve along with
application requirements dynamically [17]. Cloud native software
requires mechanisms for seamlessly integrating new components
and updating the ones already running as part of its normal op-
eration. Furthermore, the flexibility of the cloud enables today’s
systems to update infrastructure resources at execution time, such
as Software Defined Networks [2] and Software Defined Infrastruc-
tures [1]. Regardless of the characteristics of these mechanisms,
deployment specifications should remain updated with respect to
the actual system deployment as it adapts. Runtime representations
of these specifications, as explained in the previous challenges, facil-
itate maintaining the correspondence between the various system
views and its architecture and deployment. The challenge here is
to depict the D&C evolution, not only by performing isolated archi-
tectural changes in the infrastructure but especially tracking and
visualising them in the specification effectively.

Deployment specification tools must support decision making
by allowing practitioners to assess different configurations and

2https://kubernetes.io
3https://mesosphere.github.io/marathon
4http://getsingularity.com
5http://aurora.apache.org
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evaluate the track of architectural changes. In the same sense, sys-
tems themselves may take advantage of these techniques via the
associated D&C runtime models.

According to the quality concerns, application architects may
need to exploit the cloud elasticity to scale up and down infras-
tructure resources [17]. D&C notations must support the explicit
incorporation of elasticity requirements. However, elasticity is a
multi-dimensional view and, therefore, a complex problem [10]. It
requires evaluating three different factors namely resource, cost,
and quality; and most importantly, their relation. Therefore, the in-
tegration of such requirements should be made through specialised
models, such as SYBL [8].

6 CONCLUSIONS
The D&C of complex and distributed software requires technolog-
ical capabilities that pose specific challenges in its specification.
We strongly believe that the current research focus on the com-
puting infrastructure to realise the deployment of such systems is
not enough for coping efficiently with these challenges, especially
when the distribution is as wide as in CPS, such as smart cities and
cloud environments.

The challenges we characterize in this paper are: (1) the need for
complete deployment notations to allow stakeholders specifying
and visualising large-scale deployments from different perspectives
and levels of abstraction; (2) the need for deployment notations to
support cross-cutting concerns; (3) the need for notation and tool
support for linking design and runtime deployment concepts; and
(4) tool support for the evolution of deployment specifications and
configuration management at runtime.

By identifying this initial set of challenges, we aim to motivate
researchers to investigate deployment specification in the context of
large-scale systems. Overcoming these challenges would imply not
only significant savings in engineers and computing time, but also a
more seamless process of re-deployment in continuous integration;
along with the possibility of self-learning when and how to adapt
portions of a CPS based on context-based performance indicators.

ACKNOWLEDGMENTS
This work was funded in part by the National Sciences and Engi-
neering Research Council (NSERC) of Canada, IBM Canada Ltd., the
University of Victoria and Universidad Icesi. The authors would like
to thank IBM’s Centre for Advanced Studies, Canada for supporting
this project.

REFERENCES
[1] Nasim Beigi-Mohammadi, Hamzeh Khazaei, Mark Shtern, Cornel Barna, and

Marin Litoiu. 2016. On Efficiency and Scalability of Software-Defined Infrastruc-
ture for Adaptive Applications. In Proceedings 13th IEEE International Conference
on Autonomic Computing (ICAC 2016). 25–34. https://doi.org/10.1109/ICAC.2016.
39

[2] Nasim Beigi-Mohammadi and Marin Litoiu. 2017. Engineering Self-Adaptive
Applications on Cloud with Software Defined Networks. In Proceedings IEEE
International Conference on Cloud Engineering (IC2E 2017). 9–12. https://doi.org/
10.1109/IC2E.2017.43

[3] Gordon Blair, Nelly Bencomo, and Robert B. France. 2009. Models@run.time.
Computer 42, 10 (Oct 2009), 22–27. https://doi.org/10.1109/MC.2009.326

[4] Laurent Broto, Daniel Hagimont, Patricia Stolf, Noel Depalma, and Suzy Temate.
2008. Autonomic Management Policy Specification in Tune. In Proceedings 23rd
ACM Symposium on Applied Computing (SAC 2008). ACM, New York, NY, USA,
1658–1663. https://doi.org/10.1145/1363686.1364080

[5] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. 2006. The FRACTAL component model and its support in Java.
Software: Practice and Experience 36, 11-12 (2006), 1257–1284. https://doi.org/10.
1002/spe.767

[6] Eddy Caron, Pushpinder Kaur Chouhan, and Holly Dail. 2006. GoDIET: a de-
ployment tool for distributed middleware on Grid’5000. Research Report RR-5886.
INRIA. https://hal.inria.fr/inria-00071382

[7] Eddy Caron and Frédéric Desprez. 2006. Diet: A scalable toolbox to build network
enabled servers on the grid. The International Journal of High Performance
Computing Applications 20, 3 (2006), 335–352.

[8] Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar.
2013. SYBL: An Extensible Language for Controlling Elasticity in Cloud Applica-
tions. In Proceedings 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid 2013). 112–119. https://doi.org/10.1109/CCGrid.2013.42

[9] Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C. Schmidt, and
Aniruddha Gokhale. 2005. DAnCE: A QoS-Enabled Component Deployment and
Configuration Engine. Springer Berlin Heidelberg, Berlin, Heidelberg, 67–82.
https://doi.org/10.1007/11590712_6

[10] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong. 2011.
Principles of Elastic Processes. IEEE Internet Computing 15, 5 (Sept 2011), 66–71.
https://doi.org/10.1109/MIC.2011.121

[11] Tamar Eilam, Michael Elder, Alexander V. Konstantinou, and Ed Snible. 2011.
Pattern-based composite application deployment. In Proceedings 12th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2011). 217–224.
https://doi.org/10.1109/INM.2011.5990694

[12] Tamar Eilam, Michael H. Kalantar, Alexander V. Konstantinou, and Giovanni
Pacifici. 2005. Reducing the complexity of application deployment in large data
centers. In Proceedings 9th IFIP/IEEE International Symposium on Integrated Net-
work Management (IM 2005). 221–234. https://doi.org/10.1109/INM.2005.1440790

[13] Kaoutar El Maghraoui, Alok Meghranjani, Tamar Eilam, Michael Kalantar, and
Alexander V. Konstantinou. 2006. Model Driven Provisioning: Bridging the
Gap Between Declarative Object Models and Procedural Provisioning Tools. In
Proceedings 7th International Middleware Conference (Middleware 2006). Springer-
Verlag New York, Inc., New York, NY, USA, 404–423. http://dl.acm.org/citation.
cfm?id=1515984.1516015

[14] Areski Flissi, Jérémy Dubus, Nicolas Dolet, and Philippe Merle. 2008. Deploying
on the Grid with DeployWare. In Proceedings 8th IEEE International Symposium
on Cluster Computing and the Grid (CCGRID 2008). 177–184. https://doi.org/10.
1109/CCGRID.2008.59

[15] Truong Ho-Quang, Regina Hebig, Gregorio Robles, Michel R. V. Chaudron, and
Miguel Angel Fernandez. 2017. Practices and Perceptions of UML Use in Open
Source Projects. In Proceedings 39th International Conference on Software En-
gineering: Software Engineering in Practice Track (ICSE-SEIP 2017). IEEE Press,
Piscataway, NJ, USA, 203–212. https://doi.org/10.1109/ICSE-SEIP.2017.28

[16] John Hutchinson, Mark Rouncefield, and Jon Whittle. 2011. Model-driven
Engineering Practices in Industry. In Proceedings 33rd International Confer-
ence on Software Engineering (ICSE 2011). ACM, New York, NY, USA, 633–642.
https://doi.org/10.1145/1985793.1985882

[17] Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael VÃűgler, Fei Li, and
Schahram Dustdar. 2014. MADCAT: A Methodology for Architecture and De-
ployment of Cloud Application Topologies. In Proceedings 8th International
Symposium on Service Oriented System Engineering (SOSE 2014). 13–22. https:
//doi.org/10.1109/SOSE.2014.9

[18] Hamzeh Khazaei, Saeed Zareian, Rodrigo Veleda, and Marin Litoiu. 2016. Sipresk:
A Big Data Analytic Platform for Smart Transportation. Springer International
Publishing, Cham, 419–430. https://doi.org/10.1007/978-3-319-33681-7_35

[19] Ariadi Nugroho and Michel R.V. Chaudron. 2007. A Survey of the Practice of
Design – Code Correspondence amongst Professional Software Engineers. In
Proceedings 1st International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007). 467–469. https://doi.org/10.1109/ESEM.2007.69

[20] Ariadi Nugroho and Michel R.V. Chaudron. 2008. A Survey into the Rigor of
UML Use and Its Perceived Impact on Quality and Productivity. In Proceedings
2nd ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM 2008). ACM, New York, NY, USA, 90–99. https://doi.org/10.
1145/1414004.1414020

[21] OMG. 2006. Deployment and Configuration of Component-based Distributed
Applications Specification—Version 4.0. Object Management Group (2006).

[22] William R. Otte, Aniruddha Gokhale, and Douglas C. Schmidt. 2011. Predictable
Deployment in Component-based Enterprise Distributed Real-time and Em-
bedded Systems. In Proceedings 14th International ACM Sigsoft Symposium on
Component Based Software Engineering (CBSE 2011). ACM, New York, NY, USA,
21–30. https://doi.org/10.1145/2000229.2000233

[23] R. K. Pandey. 2010. Architectural Description Languages (ADLs) vs UML: A
Review. ACM SIGSOFT Software Engineering Notes 35, 3 (May 2010), 1–5. https:
//doi.org/10.1145/1764810.1764828

[24] Marian Petre. 2013. UML in Practice. In Proceedings 35th International Conference
on Software Engineering (ICSE 2013). IEEE Press, Piscataway, NJ, USA, 722–731.

https://doi.org/10.1109/ICAC.2016.39
https://doi.org/10.1109/ICAC.2016.39
https://doi.org/10.1109/IC2E.2017.43
https://doi.org/10.1109/IC2E.2017.43
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1145/1363686.1364080
https://doi.org/10.1002/spe.767
https://doi.org/10.1002/spe.767
https://hal.inria.fr/inria-00071382
https://doi.org/10.1109/CCGrid.2013.42
https://doi.org/10.1007/11590712_6
https://doi.org/10.1109/MIC.2011.121
https://doi.org/10.1109/INM.2011.5990694
https://doi.org/10.1109/INM.2005.1440790
http://dl.acm.org/citation.cfm?id=1515984.1516015
http://dl.acm.org/citation.cfm?id=1515984.1516015
https://doi.org/10.1109/CCGRID.2008.59
https://doi.org/10.1109/CCGRID.2008.59
https://doi.org/10.1109/ICSE-SEIP.2017.28
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1109/SOSE.2014.9
https://doi.org/10.1109/SOSE.2014.9
https://doi.org/10.1007/978-3-319-33681-7_35
https://doi.org/10.1109/ESEM.2007.69
https://doi.org/10.1145/1414004.1414020
https://doi.org/10.1145/1414004.1414020
https://doi.org/10.1145/2000229.2000233
https://doi.org/10.1145/1764810.1764828
https://doi.org/10.1145/1764810.1764828


Deployment Specification Challenges
in the Context of Large Scale Systems CASCON’17, November 2017, Markham, Ontario, Canada

http://dl.acm.org/citation.cfm?id=2486788.2486883
[25] Subhav Pradhan. 2016. Algorithms and Techniques for Managing Extensibility in

Cyber-Physical Systems. Ph.D. Dissertation. Vanderbilt University.
[26] Subhav Pradhan, Aniruddha Gokhale, William R. Otte, and Gabor Karsai. 2013.

Real-time Fault Tolerant Deployment and Configuration Framework for Cyber
Physical Systems. SIGBED Rev. 10, 2 (July 2013), 32–32. https://doi.org/10.1145/
2518148.2518170

[27] Mahamadou Toure, Patricia Stolf, Daniel Hagimont, and Laurent Broto. 2010.
Large Scale Deployment. In Proceedings 6th International Conference on Autonomic
and Autonomous Systems (ICAS 2010). 78–83. https://doi.org/10.1109/ICAS.2010.
20

[28] Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram Dust-
dar. 2015. DIANE - Dynamic IoT Application Deployment. In Proceedings
IEEE International Conference on Mobile Services (MS 2015). 298–305. https:
//doi.org/10.1109/MobServ.2015.49

http://dl.acm.org/citation.cfm?id=2486788.2486883
https://doi.org/10.1145/2518148.2518170
https://doi.org/10.1145/2518148.2518170
https://doi.org/10.1109/ICAS.2010.20
https://doi.org/10.1109/ICAS.2010.20
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1109/MobServ.2015.49

	Abstract
	1 Introduction
	2 Motivational Example
	3 Our Vision
	4 Overview of the State of the Art
	4.1 Deployment for Large-Scale Infrastructures
	4.2 Deployment for Cyber-Physical Systems
	4.3 Discussion

	5 Research Challenges
	5.1 CH1: Completeness and Expressiveness of Deployment Specification
	5.2 CH2: Specification of Transversal Concerns
	5.3 CH3: Linking Design and Runtime Deployment Concepts
	5.4 CH4: Adaptivity and Configuration Management at Runtime

	6 Conclusions
	Acknowledgments
	References

