
A Framework For Generating And Deploying
Dynamic Performance Monitors

For Self-adaptive Software Systems

Miguel Jimenez, Hausi Müller
miguel@uvic.ca, hausi@uvic.ca

University of Victoria
Victoria, Canada

Gabriel Tamura
gtamura@icesi.edu.co

Universidad Icesi
Cali, Colombia

Rigi Research

Motivation

Rigi Research

Self-aware
systems

Today’s
monitoring

mechanisms

2

Adaptation goals and
monitoring infrastructures are
non-mutable

→ static monitors

The DYNAMICO Reference Model

Rigi Research 3

Adaptation goals and monitoring
requirements

Adaptive behavior of the target
system

context information to preserve
context relevance

Motivation

Rigi Research

Self-aware
systems

Today’s
monitoring

mechanisms

● Monitoring information is used by system
administrators, not the system itself

● SLAs are ensured mostly based on
infrastructure’s behavior

● Cloud infrastructures are more powerful than
ever

4

MotivationAverage Load
956 u/s

Resource
Utilization

95%

Throughput
45 T/s

Transactions
162 KT/h

Response
Time
0.34 s

Google: 2% slower = 2% less searching/user

Yahoo: 400 millis faster = 9% more traffic

Amazon = 100 millis faster = 1% more revenue (ppt)

Rigi Research 5

http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf
http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf
http://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
http://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
http://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
http://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
http://www.slideshare.net/stoyan/dont-make-me-wait-or-building-highperformance-web-applications
http://radar.oreilly.com/2008/08/radar-theme-web-ops.html
http://radar.oreilly.com/2008/08/radar-theme-web-ops.html
http://radar.oreilly.com/2008/08/radar-theme-web-ops.html
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxnbGluZGVufGd4OjVmZDIzMWMzMGI4MDc3OWM
http://radar.oreilly.com/2008/08/radar-theme-web-ops.html

Outline

Solution Overview

Pascani & Amelia

Monitoring requirements for self-adaptive systems

Contributions, Conclusions and Future work

Rigi Research 6

Requirements: ConsiderationsAverage Load
956 u/s

Resource
Utilization

82%

Throughput
34 T/s

Transactions
123 KT/h

Response
Time
0.42 s

• How can we develop cost-effective
monitoring solutions?

• How to monitor systems that can modify
their structure at runtime?

• How can we monitor new variables of
interest while the system is operating?

Rigi Research 7

Requirements: Functional Scope

A monitoring infrastructure to continuously measure the satisfaction of the
system’s performance must be capable of:

● Updating its measurement strategies dynamically as the managed system’s
requirements or the environment evolve

● Realizing deployment and integration of monitoring components at runtime

● Providing composable, traceable, and controllable monitoring capabilities

● Reporting unified and hierarchical monitoring data with distinct levels of depth

Rigi Research 8

Requirements: Non-functional Scope

Compatibility, Coexistence and Interoperability
Dynamic deployment and redeployment of monitors and probes.

Scalability
Scalability of the monitoring infrastructure.

Modularity
Composability of monitoring components.

Modifiability, Changeability
Controllability of monitoring components.

Rigi Research 9

Solution: Pascani & Amelia

Rigi Research

Dynamic Monitoring Architecture

Data Acquisition

Probes

Data Aggregation
& Filtering

Monitors

Data Persistence

Databases

Data Visualization

Monitoring Dashboard

Rigi Research 11

Deployed@runtime

Deployed@runtime

Solution Overview
1. Identify the context

variables

2. Create monitoring
logic3. Execute the Pascani

engine

4. Execute the Amelia
engine

5. Deploy the generated
monitors

6. Visualize the system’s
performance data

Rigi Research 12

Pascani: DSL for dynamic performance monitoring

Component-based and statically-typed DSL for generating
monitoring components that are controllable at runtime.

Main domain concepts:

• Namespace (Context variables)
• Probe (Sensor)
• Monitor

Rigi Research 13

Pascani: a DSL for dynamic performance monitoring

Rigi Research 14

Amelia: a DSL for dynamic software deployment

Declarative and rule-based DSL for automating the
deployment of distributed component-based systems.

Main domain concepts:

• Subsystem deployment
• Deployment strategy

Rigi Research 15

Contributions

An Architecture for Dynamic Performance Monitoring

A Performance Monitoring Language

A Deployment Language for distributed Systems

Jiménez, M., Villota Gomez, A., Villegas, N. M., Tamura, G., & Duchien, L. (2014, September). A Framework for Automated and
Composable Testing of Component-based Services. In Maintenance and Evolution of Service-Oriented and Cloud-Based Systems
(MESOCA), 2014 IEEE 8th International Symposium on the (pp. 1-10). IEEE.

Arboleda, H., Paz, A., Jiménez, M., Tamura, G., "A Framework for the Generation and Management of Self-Adaptive Enterprise
Applications" Computing Colombian Conference (10CCC), 2015 10th, Bogota, 2015, pp. 55-62.

Arboleda, H., Paz, A., Jiménez, M., & Tamura, G. (2016). Development and Instrumentation of a Framework for the Generation and
Management of Self-Adaptive Enterprise Applications. Ingenieria Y Universidad, 20(2).

Rigi Research 16

Conclusions
- Our architecture provides a baseline to, gradually, enable the system itself

for generating the monitoring components that allow the infrastructure to
remain pertinent.

- Our qualitative evaluation determined that both languages are effective in
achieving:

• Functional suitability
• Usability
• Reliability
• Productivity
• Expressiveness

Rigi Research 17

Future Work

Evolution of Pascani and Amelia

Support for state recovery on re-deployment

Support for automatic generation of Pascani specs

Development of performance-aware systems

Rigi Research 18

Thanks for your attention!
Questions?

Rigi Research

Backup slides

Rigi Research

Pascani: a DSL for dynamic performance monitoring

Namespace

Stores for values associated to names, identified with a
store name.

These values represent context variables, such as latency,
throughput, capacity, etc.

Rigi Research 21

Pascani: a DSL for dynamic performance monitoring

Probe

Sensor deployed inside the Target System, to intercept service requests
and measure execution data such as service latency, or number of
requests attended per unit of time.

Rigi Research 22

Pascani: a DSL for dynamic performance monitoring

Monitor

•Monitoring logic is specified in event handlers, which
follow the implicit invocation design pattern.

•Event handlers are used to:
• Aggregate and filter the measurement data,
• Read and update context variables,
• Invoke external services, such as alert services

Rigi Research 23

Pascani: a DSL for dynamic performance monitoring

Monitor

• Event-driven execution (no main function)
• Declares execution and time-based («generated») events.

Execution events correspond to measurements from Probes.
Eg:

event e raised on return of <target>
event p raised periodically on `0/5 * * * * ?`

Rigi Research 24

Pascani: a DSL for dynamic performance monitoring

Communication between monitors and probes may be
performed in two modes: push or pull.

For instance:

latency: push
throughput: pull

Rigi Research 25

Amelia: a DSL for dynamic software deployment

Subsystem Deployment

Module made of execution rules that is executed into
specific computing nodes. Said rules are dependable
containers of commands, that guide the deployment of
software components.

Rigi Research 26

Amelia: a DSL for dynamic software deployment

Deployment Strategy

A module that contains flow control statements to execute
(deploy) a set of subsystems in a particular way.

Rigi Research 27

Example: context variables (ii)
package co.edu.icesi.driso.matrices

namespace State {
 // Represents the number of multiplications
 // done in the latest throughput period
 var Integer throughput = 0

 // Represents the service latency
 var Long latency = 0L
}

Rigi Research 28

Example: context variables (i)
package co.edu.icesi.driso.matrices

namespace SLI {
 // Expected throughput in a period of 10 seconds
 val Integer throughput = 10

 // Chronological expression representing the throughput period
 val CronExpression throughputPeriod = `*/10 * * * * ?`

 // Expected latency for all service executions
 val Integer latency = 3000
}

Rigi Research 29

Example: monitoring service latency
package co.edu.icesi.driso.matrices.strassen

import java.net.URI
import org.pascani.dsl.lib.events.ReturnEvent
import static org.pascani.dsl.lib.sca.FluentFPath.$domain

using co.edu.icesi.driso.matrices.State

monitor Latency {

 val target = $domain.child("Strassen").child("matrix").service("multiplication")

 event e raised on return of target

 handler onReturn(ReturnEvent e) {
 val tags = #{ "strategy"->"strassen", "host"->"grid0", "component"->"Strassen” }
 State.latency = tag(e.value, tags)
 }

 config {
 e.bindingUri = new URI("http://grid0:" + 3000)
 e.subscribe(onReturn)
 }
}

30

Example: monitoring service throughput
…

using co.edu.icesi.driso.matrices.State
using co.edu.icesi.driso.matrices.State

monitor Throughput {

 val target = $domain.child("Strassen").child("matrix").service("multiplication")
 val routingKey = "strassen.throughput"
 val bindingUri = new URI("http://grid0:" + 3000)
 val probe = newProbe(target, routingKey, ReturnEvent, false, bindingUri)

 event e raised periodically on SLI.throughputPeriod

 handler onReturn(ReturnEvent e) {
 val count = probe.countAndClean(-1, System.currentTimeMillis)
 val tags = #{ "strategy"->"strassen", "host"->"grid0", "component"->"Strassen" }
 State.throughput = tag(count, tags)
 }

 config {
 i.subscribe(onInterval)
 }
}

31

Example: helloworld

cd “/tmp”

eval ‘remove-sca(“component”)’ on new URI(“http://node”)

transfer “/tmp/files” to “/home/user/files”

compile “src” “output”

run “component” -libpath “output.jar”

Any instance of CommandDescriptor

Rigi Research 32

Example: helloworld
package test

import org.amelia.dsl.lib.descriptors.Host
import static test.Utilities.*

subsystem Helloworld {

 val Host local = new Host(“localhost”, 21, 22, “user”, “pass”)

 on local {
 init:
 startServer(“/tmp/data”)

 config: init;
 cd “/tmp”
 cmd “wget http://.../files.zip”
 cmd “unzip files.zip”
 ...
 }
}

33

Example: SLI Subsystem
package amelia.co.edu.icesi.driso.matrices

includes amelia.common.Prerequisites

subsystem SLI {

 val Iterable<String> libpath = classpath + #['«project»/«project».jar']
 val Iterable<String> errors = #["Connection refused"]

 on host {
 SLI: compilation;
 run -r 11000 "SLI" -libpath libpath –s ”r" –m "r" …=> [
 errorTexts = errorTexts + errors
]
 }

}

34

Example: SLI (WarmUp) Deployment

package amelia.co.edu.icesi.driso.matrices
includes amelia.co.edu.icesi.driso.matrices.SLI
deployment WarmUp {

// Multiple instances can be deployed several times
add(new SLI)

for (i: 1..10) {
 start(true, true)

}
}

35

